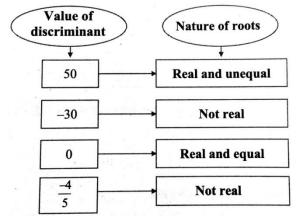


Model Answer Set- III Std. – 10th EM/Semi Subject – Algebra

Marks: 40


Time : 2 Hrs.

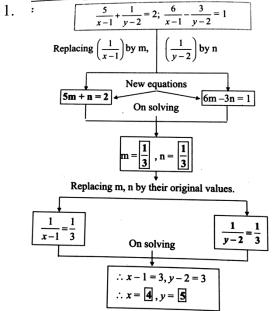
1.

2.

- Q.1 A) Choose the correct alternative. 1) b 2) d 3) b 4) c B) Solve the following questions.
 - 1. Mean $(\bar{x}) = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{69500}{50} = 1390$
 - 2. Given, $t_3 = 20$, $t_4 = 24$ $\therefore d = t_4 - t_3 = 24 - 20 = 4$
 - 3. The required quadratic equation is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ i.e. $x^2 - 2x - 44 = 0$
 - 4. Substituting y = 0 in x y = 4, we get x - 0 = 4 $\therefore x = 4$
 - \therefore The point of intersection is (4, 0)
- Q.2 A) Complete the following activities. (Any two)

No.	FV	Share is at	MV
1	₹10	Premium is ₹ 7	₹17
2	₹25	Discount is ₹ 9	₹16
3	₹5	AT PAR	₹5
4	₹20	Premium is ₹ 10	₹ 30

Class Time required for experiment (minutes) 20 - 2224 - 263. 22 - 24Class mark 21 23 25 Frequency (No. of students) 8 22 16 Co-ordinates of points (21, 8)(23, 16)(25, 22)


B) Solve the following questions. (Any four)

1.	Class Time (hrs.)	Class mark xi	Frequency (No. of students) f _i	Frequency x Class mark f _i x _i
	0 - 2	1	7	7
	2 - 4	3	18	54
	4-6	5	12	60
	6-8	7	10	70
	8-10	9	3	27
	Total	-	$\Sigma f_i = 50$	$\Sigma f_i x_i = 218$

 $Mean = \overline{X} = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{218}{50} = 4.36$ \therefore The mean of the time spent by the students for their studies is 4.36 hours. 2. Sample space, $S = \{H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6\}$ \therefore n(S) = 12 Condition for event A : To get a head or tail and an even number. \therefore A = {H2, H4, H6, T2, T4, T6} \therefore n(A) = 6 3. The given A.P. is 11, 8, 5, 2,.... Here, a = 11, d = 8 - 11 = -3Let the n^{th} term of the given A.P. be -151. Then, $t_n = -151$ Since, $t_n = a + (n - 1)d$ $\therefore -151 = 11 + (n-1)(-3)$ $\therefore -151 - 11 = (n - 1)(-3)$ $\therefore -162 = (n-1)(-3)$ $: n - 1 = \frac{-162}{-3}$ \therefore n – 1 = 54 : n = 54 + 1 = 55 \therefore 55th term of the given A.P. is -151. 4. FV = Rs. 100, MV = Rs. 120, Dividend = 15% per share Let the rate of return be x % $\therefore \frac{15}{120} = \frac{x}{100}$ $\therefore x = \frac{15 \times 100}{120} = \frac{25}{2} = 12.5\%$ \therefore The rate of return for Shriyash is 12.5 %. **Sol:** $3x^2 - 29x + 40 = 0$ 5. $3x^2 - 24x - 5x + 40 = 0$. 3x(x-8) - 5(x-8) = 0*.*.. (x-8)(3x-5)=0... $\therefore x - 8 = 0 \text{ or } 3x - 5 = 0$ $\therefore \quad x = 8 \text{ or } 3x = 5$ \therefore $x = 8 \text{ or } x = \frac{5}{3}$

: The roots of the given quadratic equation are 8 and $\frac{5}{3}$.

Q.3 <u>A)</u> Complete the following activities. (Any one)

- 2. Measure of central angle (θ) = $\frac{\text{Number of scores in the components}}{\text{Total number of scores}} \times 360^{\circ}$
 - i. Central angle for cricket (θ) = **81°**
 - $\therefore \qquad 81^\circ = \frac{\text{Students who like cricket}}{1000} \times 360^\circ$
 - $\therefore \qquad \text{Students who like cricket} = \frac{81 \times 1000}{360}$

= 225

- ii. Central angle for football $(\theta) = 63^{\circ}$
- $\therefore \qquad 63^\circ = \frac{\text{Students who like football}}{1000} \times 360^\circ$
- $\therefore \quad \text{Students who like football} = \frac{63 \times 1000}{360}$ $= \boxed{175}$

- iii. Central angle for other games $(\theta) = \boxed{72^{\circ}}$
- $\therefore \qquad 72^\circ = \frac{\text{Students who like other games}}{1000} \times 360^\circ$
- $\therefore \qquad \text{Students who like other games} = \frac{72 \times 1000}{360}$

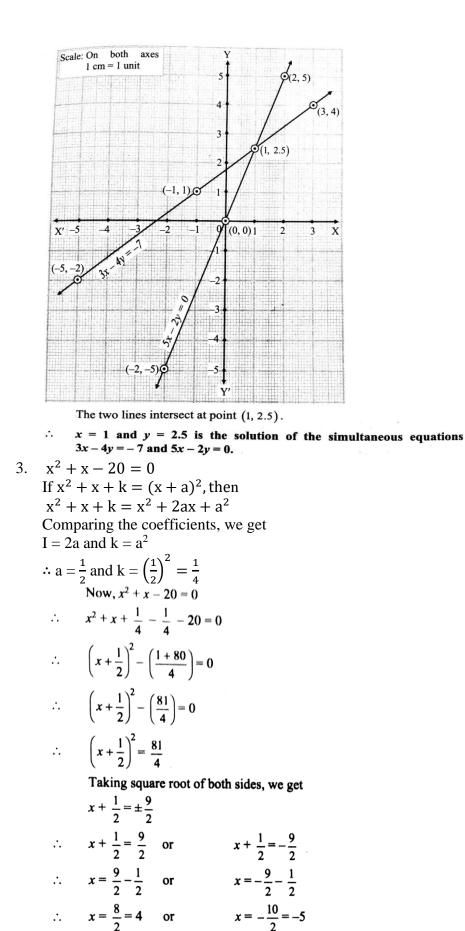
B) Solve the following questions. (Any two)

1. Here, we take A = 2500 and g = 1000

Class Weekly wages (₹)	Class mark	$d_i = x_i - A$ $= x_i - 2500$	$u_i = \frac{d_i}{g}$ $= \frac{d_i}{1000}$	Frequency (No. of workers) <i>f</i> i	fių;
1000 - 2000	1500	- 1000	-1	25	-25
2000 - 3000	$2500 \rightarrow A$	0	0	45	0
3000 - 4000	3500	1000	1	50	50
4000 - 5000	4500	2000	2	30	60
Total	· _	·	·	$\Sigma f_i = 150$	$\Sigma f_i u_i = 85$

$$\overline{u} = \frac{\sum f_i u_i}{\sum f_i} = \frac{85}{150} = 0.57$$

Mean = $\overline{X} = A + \overline{u}g$


2.

$$= 2500 + 0.57 (1000)$$

= 2500 + 570
= 3070

 \therefore The mean of the weekly wages is Rs. 3070.

Sol: The given simultaneous equations are

$$3x - 4y = -7$$

 $\therefore 4y = 3x + 7$
 $\therefore y = \frac{3x + 7}{4}$
 $x = \frac{1}{2} - \frac{-5}{4}$
 $\frac{x}{(x, y)} \frac{-1}{(-1, 1)} \frac{-5}{(-5, -2)} \frac{3}{(3, 4)}$
 $\frac{x}{(x, y)} \frac{0}{(-1, 2)} \frac{2}{(-2, -5)}$

 \therefore The roots of the given quadratic equation are 4 and -5.

- 4. Sample space (S) = $\{0, 1, 2, 3, 4, 5\}$ n(S) = 6
 - i. Let A be the event that the card drawn shows a natural number.
 - \therefore A = {1, 2, 3, 4, 5}
 - \therefore n(A) = 5
 - $\therefore P(A) = \frac{n(A)}{n(S)}$ $\therefore P(A) = \frac{5}{6}$
 - ii. Let B be the event that the card drawn shows a number less than 1.
 - $\therefore B = \{0\}$
 - \therefore n(B) = 1
 - $\therefore P(B) = \frac{n(B)}{n(S)}$
 - $\therefore P(B) = \frac{1}{6}$

iii. Let C be the event that the card drawn shows a whole number.

- $\therefore \quad C = \{0, 1, 2, 3, 4, 5\}$
- \therefore n(C) = 6
- $\therefore \quad P(C) = \frac{n(C)}{n(S)} = \frac{6}{6}$
- $\therefore P(C) = 1$

Q.4 Solve the following questions. (Any two)

- 1. Let the greater number be x and smaller number be y. According to first condition,
 - x + y = 97...(i) Now, dividend = divisor × quotient + remainder According to the second condition. $x = y \times 7 + 1$ x = 7y + 1*.*.. x - 7y = 1*.*.. ...(ii) Subtracting (ii) from (i), we get x + y = 97x - 7y = 1- + -8y = 96 $y = \frac{96}{8} = 12$ *.*.. Substituting y = 12 in (i), we get x + 12 = 97... x = 97 - 12 = 85
 - The two numbers are 85 and 12.

Let the original price for the manufacturer be $\overline{\xi} x$. Sol: 2.

GST for manufacturer = 18% of x *.*..

$$= \frac{18}{100} \times x$$
$$= \frac{18x}{100}$$

Selling price for manufacturer = $\overline{\mathbf{x}}\left(x + \frac{18x}{100}\right)$

Wholesaler:

.:.

Cost price for Wholesaler = $\overline{\overline{x}} \frac{118x}{100}$ Profit for wholesaler = 25% of $\left(\frac{118}{100}x\right)$ $=\frac{25}{100}\times\frac{118x}{100}$ $=\frac{1}{4}\times\frac{118x}{100}$ $= \overline{\mathbf{\xi}} \; \frac{118x}{400}$ Price of CCTV including profit = $\overline{\mathbf{\xi}} \left(\frac{118x}{100} + \frac{118x}{400} \right)$ GST = 18% of ₹ $\left(\frac{118x}{100} + \frac{118x}{400}\right)$ $=\frac{18}{100}\times\left(\frac{118x}{100}+\frac{118x}{400}\right)$ Selling price of wholesaler = price including profit + GST $51344.75 = \left(\frac{118}{100}x + \frac{118x}{400}\right) + \left(\frac{18}{100}\right) \left(\frac{118x}{100} + \frac{118x}{400}\right)$ $= \left(\frac{118}{100}x + \frac{118}{400}x\right) \left(1 + \frac{18}{100}\right)$ $51344.75 = \frac{590}{400} \times \frac{118}{100} \times x$... $51344.75 = 1.7405 \times x$ *.*.. $x = \frac{51344.75}{2}$... 1.7405 *.*.. x = ₹ 29,500

- Original price of CCTV for the manufacturer is ₹ 29,500. *.*..
- 3. The two digit numbers that leave remainder 1 when divided by 5 are 11, 16, 21, 26, 31, ..., 96. This sequence is an A.P. with

a = 11, d = 16 - 11 = 5 and $t_n = 96$ now, $t_n = a + (n - 1)d$ $\therefore 96 = 11 + (n-1)5$ $\therefore 96 - 11 = (n - 1)5$ $\therefore 85 = 5n - 5$ $\therefore 85 + 5 = 5n$ $\therefore 90 = 5n$ \therefore n = $\frac{90}{5}$ \therefore n = 18

 \therefore There are 18 two digit numbers which leave remainder 1 when divided by 5.

Q.5 Solve the following questions. (Any one)

Sol: Let the usual speed of the express train be x km/ hr. 1. Distance covered = 440 km

time taken =
$$\frac{440}{x}$$
 hours.

...

If the speed is increased by 8 km/hr, then the time taken = $\frac{440}{x+8}$ hours.

According to the given condition,

2.

$\frac{440}{x}$ –	$-\frac{440}{x+8} = \frac{30}{60}$ [:: 30 mins	$s = \frac{30}{60}$ hrs.
<i>:</i> .	$440\left[\frac{1}{x} - \frac{1}{x+8}\right] = \frac{1}{2}$	
÷	$\frac{1}{x} - \frac{1}{x+8} = \frac{1}{2} \times \frac{1}{440}$	• •
<i>.</i>	$\frac{x+8-x}{x(x+8)} = \frac{1}{880}$	
	$\frac{8}{x^2+8x} = \frac{1}{880}$	
	$x^2 + 8x = 8 \times 880$	
.:	$x^2 + 8x - 7040 = 0$	·
.:	$x^2 + 88x - 80x - 7040$	= 0
	x(x+88) - 80(x+88)	= 0
·	(x+88)(x-80)=0	
.:.	x + 88 = 0 or $x - 80 =$	0
	x = -88 or $x = 80$	
	But speed cannot be no	egative.
	$x \neq -88$ \therefore	x = 80
		e express train is 80 km/hr.
Let P(C)		1
$\therefore P(B) =$		
and P(A		
,	A + P(B) + P(C) = 1 2x + x = 1	
$\therefore 4x + 2$ $\therefore 7x = 1$		
$\therefore x = \frac{1}{7}$		
/	$=\frac{1}{7}, P(B) = \frac{2}{7}, P(A) = \frac{4}{7}$	
- (0) -	7, -(2, 7), -(2, 7) = 7	